
lemlab
Release 1.0

Sebastian D. Lumpp, Michel Zadé, Markus Doepfert

Nov 08, 2022





CONTENTS

1 General information 3

2 Introduction to LEMs 5

3 Getting started with lemlab 9

4 Configuring and executing scenarios 15

5 Real-time co-simulation 23

6 Analyzing results 25

7 Getting involved 31

i



ii



lemlab, Release 1.0

Authors
Sebastian D. Lumpp, Michel Zadé, Markus Doepfert

Organization
Chair of Energy Economy and Application Technology, Technical University of Munich

Version
1.0

Date
28.05.2021

Copyright
The model code is licensed under the GNU General Public License 3.0. This documentation is
licensed under a Creative Commons Attribution 4.0 International license.

CONTENTS 1

mailto:sebastian.lumpp@tum.de
mailto:michel.zade@tum.de
mailto:markus.doepfert@tum.de
https://www.ei.tum.de/en/ewk/
https://www.gnu.org/licenses/gpl-3.0
https://creativecommons.org/licenses/by/4.0/


lemlab, Release 1.0

2 CONTENTS



CHAPTER

ONE

GENERAL INFORMATION

Authors
Sebastian D. Lumpp, Michel Zadé, Markus Doepfert

Organization
Chair of Energy Economy and Application Technology, Technical University of Munich

Version
1.0

Date
01.06.2021

Copyright
The model code is licensed under the GNU General Public License 3.0. This documentation is
licensed under a Creative Commons Attribution 4.0 International license.

1.1 Description

lemlab is an open-source tool for the agent-based development and testing of local energy market applications offering:

• a fully open-source, agent-based local energy market modelling toolbox

• a modular and extendable design for easy adaptation to your own research questions

• real-time capabilities for the development and testing of hard- and software

• a database-agnostic approach that enables the integration of multiple database technologies

• integrated time-series data for several plant types (household loads, pv, wind, heat pumps, electric vehicles etc. . . )

• template functionality for load and generation forecasting, trading strategies, cutting-edge market clearing algo-
rithms designed specifically for LEMs [paper under review] and much more. . .

1.2 Changes

01.06.2021 - first release

3

mailto:sebastian.lumpp@tum.de
mailto:michel.zade@tum.de
mailto:markus.doepfert@tum.de
https://www.ei.tum.de/en/ewk/
https://www.gnu.org/licenses/gpl-3.0
https://creativecommons.org/licenses/by/4.0/


lemlab, Release 1.0

1.3 Dependencies

• Python please see lemlab-env.yaml for virtual environment configuration

• Any solver supported by pyomo. We suggest gurobi or cplex

• PostgreSQL

4 Chapter 1. General information

https://www.python.org/
https://www.gurobi.com/
https://www.ibm.com/analytics/cplex-optimizer


CHAPTER

TWO

INTRODUCTION TO LEMS

This chapter’s purpose is to familiarize the user with what local energy markets (LEMs) actually are, how they work,
who the participants are and basic terminology used in this research area.

2.1 The why and what of LEMs

The fundamental goal of markets is to efficiently match supply and the demand. While the definition of “efficiency”
may vary, energy markets share this goal. Traditional energy markets are usually implemented on national levels. The
transmission of electricity is treated as an entirely separate task in European liberalized markets. These traditional
systems are facing challenges in the face of the rapid expansion of distributed energy resources (often in the form of
fluctuating renewables) as well as the anticipated electrification of the mobility and heat sectors in the form of electric
vehicles and heat pumps.

The European Union has included new rules in its “Directive on common rules for the internal electricity market”
((EU) 2019/944) “that enable active consumer participation, individually or through citizen energy communities, in
all markets, either by generating, consuming, sharing or selling electricity, or by providing flexibility services through
demand-response and storage. The directive aims to improve the uptake of energy communities and make it easier for
citizens to integrate efficiently in the electricity system, as active participants.”

Specifically, the aim of these energy communities is to enable decentralized producers and consumers (prosumers) to
participate “on equal footing with large participants”.

There is no doubt that developing local energy markets and effectively integrating these into existing structures presents
a major engineering challenge. In addition to questions of market design, social welfare, and regulation, technical ques-
tions regarding infrastructure, organization, agent strategies, market gaming, price formation and many more threaten
to overwhelm designers.

In order to tackle the challenges faced by engineers, designers, and regulators, we present the local energy market lab-
oratory, lemlab, an open-source tool for the agent-based development and testing of local energy market applications.

2.2 What does a LEM look like?

There is as yet no consensus on what the best structure for a LEM is. For this reason we have attempted to keep our
architecture as generic as possible in order to allow the user maximal flexibility in the system designs they wish to
implement.

We begin by explaining the basic structure of a LEM according to lemlab:

5



lemlab, Release 1.0

At the heart of the lemlab is the prosumer. In modern power systems, the end user is no longer just a consumer. The
prosumer is the generalized market participant, combining production, consumption, and flexibility with a preference
for local and sustainable energy. Of course a prosumer could be a pure consumer, a simple producer, they might be
entirely inflexible or they might prefer their electrical energy sources to produce as much carbon dioxide as possible.
In any case, we will still refer to them as a prosumer.

Prosumers place bids on a LEM platform. This platform combines all market functionality, beginning with user
management, bid/offer collection and clearing, and ending with meter reading collection, market settlement and levy
collection. Aggregators trade on a LEM on behalf of a group of prosumers. Retailers take care of coupling the LEM
to the wholesale market.

That’s pretty much it. Of course we can also model grid operators, transmission grids and wholesale markets as well
as multiple LEMs. These are possible in lemlab and some are covered in this documentation. All are simply a matter
of rearranging the building blocks lemlab supplies to construct the desired system.

2.3 When does what happen in a LEM?

Similarly to LEM structure, there is no general consensus on the timeline of events in a LEM. We present here a, in
our opinion, sensible timeline for a local energy market, based loosely on the general principles underlying European
electricity markets.

We divide our market timeline into four fundamental time periods. The first is registration, which takes place before
trading commences. We then enter the rolling horizon market sequence, which repeats for each delivery period. Each

6 Chapter 2. Introduction to LEMs



lemlab, Release 1.0

day is divided into an arbitrary number of periods of energy exchange, referred to as timestep of delivery (ts_delivery)
labelled as the period between td and td + T. We usually use 15 minute windows (T=900s), as the German electricity
market is divided into 15 minute periods. During this time, the physical flow of energy takes place. All other activities
either take place between market opening, td - tO, and the beginning of the ts_delivery in question, td, and are known
as pre-exchange-activities, or they take place after delivery, in which case they are known as settlement activities.
Examples of pre-exchange activities are forecasting of demand and energy trading, while settlement activites include
meter value logging, market settlement and balancing energy settlement.

The above figure shows a slightly more detailed timeline. We see pre-clearing activities taking place during each of
n clearing periods before the timestep of energy delivery. Market clearing can take place during some or all of these
periods. Post-clearing activities take place after clearing but before delivery and typically include the checking of
clearing results. Metering and settlement activities are performed after the period of energy delivery is complete.

For a more detailed look into the construction of lemlab and the individual agents, please see chapters 3 and 4.

2.4 Basic terminology

agent someone participating in the LEM
aggregator an agent trading on behalf of several other agents
LEM local energy market
pre-clearing activi-
ties

activities taking place before market clearing, e.g. forecasting and trading

pre-exchange activi-
ties

activities taking place before energy exchange, e.g. forecasting, trading, and checking clear-
ing results

post-clearing activi-
ties

activities taking place before energy exchange but after market clearing, e.g. checking clear-
ing results

prosumer an agent with production and/or consumption, participating the in the LEM
registration the first step in participating in a LEM
retailer an agent who couples the LEM with the wholesale markets
settlement activities taking place after market clearing, e.g. market settlement and balancing settlement

2.4. Basic terminology 7



lemlab, Release 1.0

8 Chapter 2. Introduction to LEMs



CHAPTER

THREE

GETTING STARTED WITH LEMLAB

3.1 General

In order to further enable the integration of ever-increasing shares of decentralized electricity generation and flexible
prosumers, local/regional energy markets (LEM) are being investigated as a potential solution to maximize local match-
ing of generation of consumption in order to relieve pressure on electrical grids by leveraging the inherent temporal
flexibility of the smart prosumer.

Investigating the unique challenges involved in constructing stable and efficient LEMs usually involves the setting up
of complex and extensive simulation environments, the collection of sufficient data and deep technical knowledge of
all components involved. Only then can the desired solution be implemented and tested. Developing software or
hardware tools for deployment in the field typically requires the development of hardware/software-in-the-loop (XiL)
development environments in order to test prototypes and before field testing can commence.

lemlab was designed specifically with these use cases in mind. lemlab allows the user to simulate a LEM using a full
agent-based modelling (ABM) in either simulation (SIM) or real-time (RTS) modes. This allows the rapid testing of
algorithms as well as the real-time integration of hardware and software components.

3.2 Installation guide

lemlab is maintained using a combination of PyCharm, PostgreSQL, Gurobi and Anaconda. This installation guide
will explain the procedure for this software combination. It is recommended that beginners follow this guide.

Install the following software

• PyCharm (Community or Professional)

• Anaconda Individual Edition

• PostgreSQL*

• Gurobi* or CPLEX. GLPK can be used although this is non-ideal.

Clone repository You can download or clone the repository to a local directory of your choice. You can use version
control tools such as GitHub Desktop, Sourcetree, GitKraken or pure Git. The link for pure Git is:

git clone https://github.com/tum-ewk/lemlab.git

If using PyCharm, clone the repository to ./PyCharmProjects/lemlab/

Create a virtual python environment

• Open the AnacondaPrompt.

• Type conda env create -f ./PycharmProjects/lemlab/lemlab-env.yaml

9



lemlab, Release 1.0

• Take care to set the correct (absolute) path to your cloned repository.

Activate the environment

• Open PyCharm

• Go to ‘File->Open’

• Navigate to PyCharmProjects and open lemlab

• When the project has opened, go to
File->Settings->Project->Python Interpreter->Show all->Add->Conda Environment->Existing
environment->Select folder->OK`

Install a solver (we recommend Gurobi)

• Go to gurobi.com

• Create an account with your university email

• When the account has been activated, log in and download the newest Gurobi solver.

• Go to Academia->Academic Program and Licenses

• Follow the installation instructions under “Individual Academic Licenses” to activate your copy of Gurobi

Install and configure PostgreSQL

• Install PostgreSQL from https://www.postgresql.org/

• if possible, select port 5432. If this is not possible, you will need to edit the configuration file before
executing any simulations

• When your installation has been completed, launch pgAdmin 4

• Select your local server (PostgreSQL 13)

• Open Login/Group Roles and create two new login roles as follows

1. name: admin_lem
password: admin privileges: can login

superuser

2. name: market_participant
password: user privileges: can login

3.3 Test your installation

• navigate to ./PycharmProjects/lemlab/code_examples

• execute sim_1_create_scenario.py, followed by sim_3_run.py

• When the simulation has completed (this may take some time, depending on your system), analyze the results by
executing sim_4_plot_results.py

• Look at the output plots under lemlab/simulation_results/test_sim/analyzer/

Your installation was successful if you see plots similar to the following:

10 Chapter 3. Getting started with lemlab

https://www.postgresql.org/


lemlab, Release 1.0

images/mcp_ex_ante_da.png

3.3. Test your installation 11



lemlab, Release 1.0

images/price_type_ex_ante_da.png

12 Chapter 3. Getting started with lemlab



lemlab, Release 1.0

images/household_power_(20).png

images/household_finance_(20).png

3.4 Structure

3.5 Workflow

3.6 Input Data

3.4. Structure 13



lemlab, Release 1.0

14 Chapter 3. Getting started with lemlab



CHAPTER

FOUR

CONFIGURING AND EXECUTING SCENARIOS

The following sections explain how to configure new scenarios using the provided scenario generator. As of version
1.0 it is possible to create scenarios with single-family homes only. Future versions will also include multi-dwelling
units, commercial and service buildings as well as industry.

4.1 The config file

The config file specifies all parameters that are needed for the setup up. Two config files can be found in the example
folder, which can be used as starter for simulation (SIM) or real-time (RTS) modes. Furthermore, the example folder
contains standard files to create, run and analyze new scenarios.

Each config file is divided into the following categories:

• simulation

• lem

• supplier

• prosumer

• producer

• aggregator

• db_connections

4.1.1 simulation

All general parameters that the simulation requires to run are gathered in “simulation”. These differ depending on, if
the simulation is real-time or not.

4.1.2 lem

The section contains all information regarding the setup of the local energy market (LEM). The parameters include,
for example, how the market is cleared, what transaction types are to be modeled and what what types of qualities are
traded on the lem. Please note, that the market can be cleared using different methods at once, however, the market’s
behavior is based on the very first provided method.

15



lemlab, Release 1.0

4.1.3 supplier

The supplier represents the entity that ensures the balance of the market by selling additional energy and buying surplus
energy. The price at which the supplier sells/buys energy sets the boundaries between which the participants will trade
as they would never be willing to pay more than what is guaranteed by the supplier. Likewise they would not sell their
energy at a lower price than the supplier’s minimum price.

The simplest possible supplier simply creates a market price floor and ceiling by entering unlimited buy and sell offers
at fixed prices. Limited coupling capacity can be represented by limiting these buy and sell offers.

4.1.4 prosumer

This is the most extensive section as it contains all information for the individual prosumers. The prosumer class also
includes simple consumers. In this case, they are modeled as prosumers that do not own any generation or flexibility
capabilities. It is mainly divided into general settings, plant configuration and market agent configuration.

The setup starts with general settings, which contain, for example, the number of prosumers that are part of the LEM.

The household settings represent the fixed household consumption and their method of forecasting the demand. The
demand can be modeled using either a uniform value for all households or a distribution to simulate differently sized
households.

The pv settings determine the share of households with PV as well as the according sizing method and forecast model.

The battery settings can be set either dependently or independently of the PV settings allowing users to own a battery
without having to own a PV-system as well. The settings mainly contain the battery characteristics as well as the
charging method.

The electric vehicle settings encompass the share as well as the basic parameters of an electric vehicle and the corre-
sponding forecasting method to predict the availability and SoC.

The fixed gen generator settings offer the possibility to implement a constant generation, which can serve as base-load
generation, which could model run-of-river or CHP generation.

The model predictive control settings specify how the mpc will forecast the local electricity price and what its trading
horizon should be.

The market agent settings define the prosumer’s trading strategy in the market. Additionally, it can be specified, if
the prosumer is willing to pay a premium for electricity of a higher quality, e.g. if he is willing to pay 20 % more for
local energy.

The metering settings are mainly relevant for real-time simulations as lemlab allows to operate Hardware-in-the-Loop
(HiL) LEMs. They allow to simulate that meter readings arrive either late or never.

4.1.5 producer

The producer is a simple prosumer with only one generator. This allows the inclusion of a large producer, for example
a community wind or PV farm.

16 Chapter 4. Configuring and executing scenarios



lemlab, Release 1.0

4.1.6 aggregator

The aggregator can be used to simulate an agent that trades on the market for several prosumers. The settings allow to
specify which types of prosumers should be aggregated. Furthermore, the forecast method and trading horizon of the
aggregator can be set. Similar to the individual prosumers, the aggregator can be configured with a price premium that
it is willing to pay for energy of higher quality.

4.1.7 db_connections

The database connections contain the setup of the admin, i.e. the manager of the LEM, as well as the one of the market
participants. Depending on the setup, specified by the user, various database platforms can be used.

4.2 Adding input data

The modeling of market participants requires various input files that give each prosumer concrete values for their
configuration. Some of the files have a specific naming method that must be abode to and is divided into the following
subfolders found under input_data:

• balancing_prices

• ev

• ex_post_pricing

• fixedgen

• households

• levy_prices

• pv

4.2.1 balancing_prices

lemlab allows to model balancing prices either as constant or varying values. When the prices are supposed to vary
a time-series file needs to be provided, which contains the positive and negative balancing prices for every time step.
The file needs to be csv and there is no specific naming scheme to follow. The name of the file is to be provided in the
config file of the simulation in the lem section. The form of the data is shown in the following table.

Format: csv (table)

Naming scheme: None

Column
names

timestamp price_balancing_energy_positive price_balancing_energy_negative

Unit unix timestamp €/kWh* €/kWh*
Data type integer float float
Description current times-

tamp
balancing price for procured positive
energy

balancing price for fed-in negative
energy

*€ can be substituted with any other currency

4.2. Adding input data 17



lemlab, Release 1.0

4.2.2 ev

The folder contains all driving profiles for the EVs. Every EV in the simulation is randomly assigned a driving profile
for the simulation. This occurs in the scenario creation of scenario_manager.py. The file is a csv file and has no naming
scheme as they are randomly chosen.

Format: csv (table)

Naming scheme: None

Column names timestamp availability distance_driven
Unit unix timestamp None km
Data type integer boolean integer
Description current timestamp 1: EV available 0: EV not available driven distance since last departure

4.2.3 ex_post_pricing

The files within the folder describe the clearing for ex-post methods. In the ex-post methods the price for each kWh
is based on the supply-demand-ratio within the LEM for each time step. The file contains a dictionary with two keys,
which specify the price for the various supply-demand-ratios. When the ratio lies between two explicitly specified
ratios the price is interpolated using the two closest values. The name of the file needs to be identical with the name of
the method specified in the config file under type_pricing_ex_post.

Format: json (dictionary)

Naming scheme: “[name of pricing type].json”

Dict keys price supply_demand_ratio
Unit €/kWh* None
Data type float float
Description price per kWh ratio between supply and demand within the LEM

4.2.4 fixedgen

The files contain the power output of the fixed generation. The file is a csv file and has no naming scheme as they are
randomly chosen. The power output is specified as p.u. between 0 and 1 to allow differently sized fixed generation.

Format: csv (table)

Naming scheme: None

Column names timestamp power
Unit unix timestamp p.u.
Data type integer float
Description current timestamp power output specified per unit between [0,1]

18 Chapter 4. Configuring and executing scenarios



lemlab, Release 1.0

4.2.5 households

The folder contains the household profiles that contain the discrete energy use over the specified time period. Each
time stamp has a specific energy consumption in Wh. This demand is seen as inflexible and needs to be served at all
times. The file is a csv and has a specific naming conventions, which needs to be followed for the automatic scenario
creator to identify the file.

Format: csv

Naming scheme: “hh_[total demand in kWh]_[nth profile with the same demand].csv”

Column names timestamp power
Unit unix timestamp Wh
Data type integer integer
Description current timestamp energy consumption

4.2.6 levy_prices

Similar to balancing_prices the folder contains files that specify levies for each time step. The file needs to be csv but
there is no naming scheme that needs to be adhered since the file to use for the simulation needs to be written in the
config file. The file is only used when file-based levies are specified as it is also possible to specify fixed levies in the
config file.

Format: csv Naming scheme: None

Column names timestamp price_energy_levies_positive price_energy_levies_negative
Unit unix timestamp €/kWh* €/kWh*
Data type integer float float
Description current timestamp levies for energy fed into the grid levies for energy taken from the grid

4.2.7 pv (incomplete)

The PV files contain the normalized power output of different PV systems. Similar to fixedgen the PV profile is randomly
chosen when the prosumer is created within scenario_manager.py. Therefore, there is no specific naming scheme to
follow for now. However, this will change in upcoming releases once the weather data will be implemented. Therefore,
this subsection is still incomplete.

Format: csv

Naming scheme: None

Column names timestamp power
Unit unix timestamp p.u.
Data type integer float
Description current timestamp power output specified per unit between [0,1]

4.2. Adding input data 19



lemlab, Release 1.0

4.2.8 weather (incomplete)

The weather files are linked to households and pv. Future releases will also link the weather to the heat supply (e.g.
heat pump and CHP). As the files currently do not exist, this section merely serves as information for the reader that
further information will be added in future releases.

Format: json

Naming scheme: tba

4.3 Creating a new scenario

This section explains how to create a new scenario using scenario_manager.py with the aid of the example file
sim_1_create_scenario.py in the subfolder code_examples.

sim_1_create_scenario.py:

import lemlab

if __name__ == "__main__":
sim_name = "test_sim"

scenario = lemlab.Scenario()
scenario.new_scenario(path_specification="sim_0_config.yaml",

scenario_name=f"{sim_name}")

New scenario are created by first calling an instance of the scenario manager. Afterwards, the function new_scenario
requires the relative path of the config file that is to be used for the simulation as well as a name of the scenario. A short
text appears in the terminal when the creation of the scenario is completed. The scenario will be saved in the subfolder
scenarios under the given scenario name.

4.4 Editing an existing scenario

In principal there are two methods to edit an existing scenario. The first is manually by editing the config file within
a scenario. The second is automatically by opening a scenario config file using code, which allows to serialize sce-
nario editing on the basis of an existing scenario. Both methods will be explained with the aid of the example file
sim_2_edit_scenario.py in the subfolder code_examples, which contains the latter method. Please note that not all
settings can be changed as some are fundamental for a scenario. In these cases it is best to create a new scenario.

sim_2_edit_scenario.py:

import lemlab
from ruamel.yaml import YAML

if __name__ == "__main__":

sim_name = "test_sim"

# create new config file from which to edit scenario
with open(f"../scenarios/{sim_name}/config.yaml") as config_file:

config = YAML().load(config_file)
config["aggregator"]["active"] = True

(continues on next page)

20 Chapter 4. Configuring and executing scenarios



lemlab, Release 1.0

(continued from previous page)

with open(f"../scenarios/{sim_name}/config_edited.yaml", 'w+') as file:
YAML().dump(config, file)

# generate new scenario from edited config
scenario = lemlab.Scenario()
scenario.edit_scenario(path_new_config=f"../scenarios/{sim_name}/config_edited.yaml",

name_new_scenario="test_sim_with_agg")

4.4.1 Manual editing

Manual editing is most suitable when only one new scenario is to be generated based on an existing scenario as it is a
fast method. Simply navigate to the scenario that you wish to edit and create a copy of the config file within the folder.
Open the copy and edit all settings that you wish to change. Since the new config file already exists, you can skip the
middle part of the code shown above. All you need to do is to create an instance of the scenario and use the function
edit_scenario. The function requires you to specify the path of the edited config file as well as the name of the new
scenario. The scenario manager will then create a new scenario based on the existing one.

4.4.2 Automatic editing

Automatic editing is most suitable when several scenarios need to be generated from an existing one as it allows the
use of for-loops. The method differs only slightly from the manual one and is shown in the above code. Since an edited
config file was not created it needs to be done within the code. To do so, the config file of the existing scenario needs to
be imported. Afterwards, the settings can be changed. For example, in the example file the aggregator was set to True
to activate it and trade for the specified prosumers on the market. Naturally, more than one parameter can be changed
at once. The rest of the code is identical with the manual method.

4.5 Executing a scenario

The execution of a scenario is independent of whether it is real-time or not. However, real-time simulations have a few
more features which will be explained separately.

4.5.1 Non-real-time scenarios

As both methods require the same code to be run, they will be explained with the aid of the example file sim_3_run.py
in the subfolder code_examples. The file shows the execution code for a non-real-time simulation. The almost identical
code for real-time simulations can be found in rts_3_start.py

sim_3_run_py.:

import lemlab

if __name__ == "__main__":
sim_name = "test_sim"

simulation = lemlab.ScenarioExecutor(path_scenario=f"../scenarios/{sim_name}",
path_results=f"../simulation_results/{sim_name}

→˓")
simulation.run()

4.5. Executing a scenario 21



lemlab, Release 1.0

To run a simulation you first need to create an instance of the scenario executor. The instance requires the relative path
of the scenario as well as the path where to store the simulation results. By using run the simulation is started.

4.5.2 Real-time scenarios

Due to their nature, real-time simulations offer a few more features. After a simulation is started, it is possible to
pause the simulation to adjust some settings. An example on how the simulation is paused is shown in rts_4_pause.py.
Afterwards, the simulation can be continued as shown in rts_5_restart.py. Please note that the edits should occur
in between clearing points as it can otherwise cause issues when trying to restart the simulation. Furthermore, it is
possible to obtain visual information using rts_6_plot_live.py. This will export the current results of the simulation to
be plotted using the scenario analyzer, which is explained in Analyzing results. To stop the simulation use the code
provided in rts_7_stop.py.

22 Chapter 4. Configuring and executing scenarios



CHAPTER

FIVE

REAL-TIME CO-SIMULATION

documentation coming soon

23



lemlab, Release 1.0

24 Chapter 5. Real-time co-simulation



CHAPTER

SIX

ANALYZING RESULTS

lemlab comes with a variety of preconfigured plots that allow a first analysis. Additionally it is possible to create your
own plots and display them in the lemlab format.

6.1 Using the analysis toolbox

All plotting capabilities are bundled in scenario_analyzer.py. The file contains two classes. ScenarioAnalyzer contains
all functions to plot various aspects of a scenario to get a deep insight into the results. ScenarioPlotter is the configu-
ration class for lemlab, which gives all plots the same uniform look. It can also be used to create additional plots by
the user and still maintain the same look.

The example code to run the analyzer can be found in the code examples in rts_8_plot_results.py for real-time and
in sim_4_plot_results.py for non-real-time simulations. Both files first create an instance of the scenario analyzer by
providing the path of the simulation results that are to be observed. Additional arguments specify whether the figures
should be shown directly in the IDE and if they are to be saved as png-files in the subfolder analyzer of the provided
scenario. The command run_analysis() calls all analysis functions within the ScenarioAnalyzer class, which will be
explained in detail below. All functions can also be called separately by using their respective name.

sim_4_plot_results.py:

import lemlab

if __name__ == "__main__":
sim_name = "test_sim"

analysis = lemlab.ScenarioAnalyzer(path_results=f"../simulation_results/{sim_name}",
show_figures=True,
save_figures=True)

analysis.run_analysis()

6.1.1 Virtual feeder flow

plot_virtual_feeder_flow()

The plot shows the virtual power flow within the microgrid for the entire simulation period. The flow is split into
the negative flow, which represents all loads that are present in the grid and the positive flow, which sums all local
generation within the microgrid. The difference between the two is the net flow and represents the power that is either
drawn from the higher level grid during times of higher demand than production or fed into the grid vice-versa.

The function requires no input to create the plot.

25



lemlab, Release 1.0

6.1.2 Market clearing price

plot_mcp(type_market)

The plot contains the clearing price for every time step of the simulation. It both contains the individual results in
green and the weighted average in red. The more vivid the green circles of the individual results are the more bid-offers
matches were cleared at that price.

The plot has one optional argument type_market, which can be used to specify which of the simulated market is to be
plotted. If no argument is specified, the first type of market is displayed as it is the main market. For further information
about the types of market, see lem and the example config files.

images/mcp_ex_ante_da.png

26 Chapter 6. Analyzing results



lemlab, Release 1.0

6.1.3 Market balances

plot_balance()

The plot shows the market balances of each market participant for the entire simulation period. The supplier’s balance
is displayed in the bottom corner. The balances of the prosumers are shown as bars alongside the information, which
types of devices they own. If the balance is positive, it means that the prosumers earned money during this period while
they spent money, if the balance is negative. Positive balances can occur, for example, when a prosumer has as a PV
plant and battery.

The function requires no input to create the plot.

6.1.4 Price versus quality

plot_price_quality(type_market)

The plot displays the weighted market clearing price over the simulation period as well as the share of different qualities
in the microgrid. In the below figure these are local and green & local energy.

The plot has one optional argument type_market, which can be used to specify which of the simulated market is to be
plotted. If no argument is specified, the first type of market is displayed as it is the main market. For further information
about the types of market, see lem and the example config files.

6.1. Using the analysis toolbox 27



lemlab, Release 1.0

images/price_type_ex_ante_da.png

6.1.5 Household plots

plot_household(type_household, id_user)

The household plots offer further insight into the individual prosumers. The first plot shows the power profile of the
respective prosumer. It shows the individual consumers and generators as well as the power flow through the main
meter. The second plot shows the corresponding balance for every time step of the simulation. The balance is split into
revenue and fixed and varying costs. The fixed costs contain both the levies as well as balance costs while the varying
costs are the costs for purchasing electricity on the market.

The function has two optional arguments type_household and id_user to allow to plot specific prosumers.
type_household requires a tuple of 5 boolean values. Each boolean value represents the presence/lack (1/0) of one
type of device. The order is the following (PV, Battery, EV, Heat pump, Fixed generation). For example, (1, 0, 1, 0,
0) means that a prosumer with a PV plant and an EV is to be plotted. The advantage for the user is that the function
will automatically check if such a prosumer exists. If that is the case, it will be plotted, otherwise the prosumer with
the most devices will be plotted. The second optional argument id_user allows the user to specify which exact user is
to be plotted. The value can either be inserted as integer if numeric values are used as user IDs or otherwise as string.

28 Chapter 6. Analyzing results



lemlab, Release 1.0

images/household_power_(20).png

images/household_finance_(20).png

6.1.6 Costs per type prosumer

plot_balance_per_type(all_types)

To be done once the exact information is decided on.

6.1. Using the analysis toolbox 29



lemlab, Release 1.0

6.2 Creating your own plots

The scenario analyzer merely serves as first start into the analysis of created scenarios. Depending on the topic to be
investigated, additional plots are required to fully understand the market’s behavior under the given setup. Naturally,
these plots can also be created outside of the lemlab environment. All simulation results are found in the subfolder
scenario_results under the scenario name. However, it is also possible to create the new plots in the lemlab design.

To create your own plot within the lemlab environment you can include it as function in the class ScenarioAnalyzer,
however, this is not mandatory. Regardless of whether you want to include it or not the workflow is the same. After
extracting the data to be analyzed an instance of the ScenarioPlotter needs to be created. This will call lemlab’s style
and create a figure and axes object. Graphs are to be added to the axes object (e.g. ax.plot() or ax.scatter()). Once all
plots were added figure_setup is called to provide the additional figure information such as the title.

figure_setup:

figure_setup(title, xlabel, ylabel, ylabel_right, legend_labels, xlims, xticks_style)

All parameters of figure_setup are optional. The specific instructions on how to use the function can be found in the
code. Here only a few parameters will be discussed. ylabel_right is only to be used if two y-axes exist. xlims specifies
the range in which to plot. xticks_style specifies the style of the x-ticks. The available styles are “numeric” and “date”.
If no style is provided there are no x-ticks added to the x-axis. Afterwards, the plot can be displayed using matplotlib:

matplotlib.pyplot.show()

If you want to save the figure, it is possible to use the built-in function __save_figure() of the class ScenarioAnalyzer
as long as the plot is created within ScenarioAnalyzer.

30 Chapter 6. Analyzing results



CHAPTER

SEVEN

GETTING INVOLVED

@Sebastian

Join us for fun and pizza!

31


	General information
	Description
	Changes
	Dependencies

	Introduction to LEMs
	The why and what of LEMs
	What does a LEM look like?
	When does what happen in a LEM?
	Basic terminology

	Getting started with lemlab
	General
	Installation guide
	Test your installation
	Structure
	Workflow
	Input Data

	Configuring and executing scenarios
	The config file
	simulation
	lem
	supplier
	prosumer
	producer
	aggregator
	db_connections

	Adding input data
	balancing_prices
	ev
	ex_post_pricing
	fixedgen
	households
	levy_prices
	pv (incomplete)
	weather (incomplete)

	Creating a new scenario
	Editing an existing scenario
	Manual editing
	Automatic editing

	Executing a scenario
	Non-real-time scenarios
	Real-time scenarios


	Real-time co-simulation
	Analyzing results
	Using the analysis toolbox
	Virtual feeder flow
	Market clearing price
	Market balances
	Price versus quality
	Household plots
	Costs per type prosumer

	Creating your own plots

	Getting involved

